Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Frontiers in Water ; 5, 2023.
Article in English | Web of Science | ID: covidwho-2321407

ABSTRACT

Municipal sewage carries SARS-CoV-2 viruses shed in the human stool by infected individuals to wastewater treatment plants (WWTPs). It is well-established that increasing prevalence of COVID-19 in a community increases the viral load in its WWTPs. Despite the fact that wastewater treatment facilities serve a critical role in protecting downstream human and environmental health through removal or inactivation of the virus, little is known about the fate of the virus along the treatment train. To assess the efficacy of differing WWTP size and treatment processes in viral RNA removal we quantified two SARS-CoV-2 nucleocapsid (N) biomarkers (N1 and N2) in both liquid and solids phases for multiple treatment train locations from seven coastal New England WWTPs. SARS-CoV-2 biomarkers were commonly detected in the influent, primary treated, and sludge samples (returned activated sludge, waste activated sludge, and digested sludge), and not detected after secondary clarification processes or disinfection. Solid fractions had 470 to 3,700-fold higher concentrations of viral biomarkers than liquid fractions, suggesting considerably higher affinity of the virus for the solid phase. Our findings indicate that a variety of wastewater treatment designs are efficient at achieving high removal of SARS CoV-2 from effluent;however, quantifiable viral RNA was commonly detected in wastewater solids at various points in the facility. This study supports the important role municipal wastewater treatment facilities serve in reducing the discharge of SARS-CoV-2 viral fragments to the environment and highlights the need to better understand the fate of this virus in wastewater solids.

2.
Sci Total Environ ; 825: 153906, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1699490

ABSTRACT

Although numerous studies have detected SARS-CoV-2 RNA in wastewater and attempted to find correlations between the concentration of SARS-CoV-2 RNA and the number of cases, no consensus has been reached on sample collection and processing, and data analysis. Moreover, the fate of SARS-CoV-2 in wastewater treatment plants is another issue, specifically regarding the discharge of the virus into environmental settings and the water cycle. The current study monitored SARS-CoV-2 RNA in influent and effluent wastewater samples with three different concentration methods and sludge samples over six months (July to December 2020) to compare different virus concentration methods, assess the fate of SARS-CoV-2 RNA in wastewater treatment plants, and describe the potential relationship between SARS-CoV-2 RNA concentrations in influent and infection dynamics. Skimmed milk flocculation (SMF) resulted in 15.27 ± 3.32% recovery of an internal positive control, Armored RNA, and a high positivity rate of SARS-CoV-2 RNA in stored wastewater samples compared to ultrafiltration methods employing a prefiltration step to eliminate solids in fresh wastewater samples. Our results suggested that SARS-CoV-2 RNA may predominate in solids, and therefore, concentration methods focusing on both supernatant and solid fractions may result in better recovery. SARS-CoV-2 RNA was detected in influent and primary sludge samples but not in secondary and final effluent samples, indicating a significant reduction during primary and secondary treatments. SARS-CoV-2 RNA was first detected in influent on September 30th, 2020. A decay-rate formula was applied to estimate initial concentrations of late-processed samples with SMF. A model based on shedding rate and new cases was applied to estimate SARS-CoV-2 RNA concentrations and the number of active shedders. Inferred sensitivity of observed and modeled concentrations to the fluctuations in new cases and test-positivity rates indicated a potential contribution of newly infected individuals to SARS-CoV-2 RNA loads in wastewater.


Subject(s)
COVID-19 , Water Purification , Humans , RNA, Viral , SARS-CoV-2/genetics , Sewage , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL